Enumerating all the Irreducible Polynomials over Finite Field

نویسندگان

  • Nader H. Bshouty
  • Nuha Diab
  • Shada R. Kawar
  • Robert J. Shahla
چکیده

In this paper we give a detailed analysis of deterministic and randomized algorithms that enumerate any number of irreducible polynomials of degree n over a finite field and their roots in the extension field in quasilinear∗ time cost per element. Our algorithm is based on an improved algorithm for enumerating all the Lyndon words of length n in linear delay time and the known reduction of Lyndon words to irreducible polynomials. Key–Words: Finite Field, irreducible polynomilas, Lyndon words.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Number of Irreducible Polynomials with First Two Prescribed Coefficients over a Finite Field

We use elementary combinatorial methods together with the theory of quadratic forms over finite fields to obtain the formula, originally due to Kuz’min, for the number of monic irreducible polynomials of degree n over a finite field Fq with first two prescribed coefficients. The formula relates the number of such irreducible polynomials to the number of polynomials that split over the base field.

متن کامل

Factoring Multivariate Polynomials over Finite Fields

We consider the deterministic complexity of the problem of polynomial factorization over finite fields given a finite field Fq and a polynomial h(x, y) ∈ Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible polynomials. This problem admits a randomized polynomial-time algorithm and no deterministic polynomial-time algorithm is known. In this chapter, we give a determ...

متن کامل

New Algorithms for Finding Irreducible Polynomials over Finite Fields

We present a new algorithm for finding an irreducible polynomial of specified degree over a finite field. Our algorithm is deterministic, and it runs in polynomial time for fields of small characteristic. We in fact prove the stronger result that the problem of finding irreducible polynomials of specified degree over a finite field is deterministic polynomial-time reducible to the problem of fa...

متن کامل

On explicit factors of cyclotomic polynomials over finite fields

We study the explicit factorization of 2nr-th cyclotomic polynomials over finite field Fq where q, r are odd with (r, q) = 1. We show that all irreducible factors of 2nr-th cyclotomic polynomials can be obtained easily from irreducible factors of cyclotomic polynomials of small orders. In particular, we obtain the explicit factorization of 2n5-th cyclotomic polynomials over finite fields and co...

متن کامل

Recurrent methods for constructing irreducible polynomials over Fq of odd characteristics, II

In this note by using Dickson’s theorem we construct families of irreducible polynomials of degree 4nk (k = 1, 2, ...) over a finite field of odd characteristics. Also we apply Q-Transformation and present a new recurrent method for constructing a families of irreducible polynomials of degree 2nk (k = 1, 2, ...) over the finite field of F3s . Mathematics Subject Classification: 12A20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.05032  شماره 

صفحات  -

تاریخ انتشار 2016